
Approved for public release; further dissemination unlimited

UCRL-ID-147343

Software in the DOE: The
Hidden Overhead of “The
Build”

G. K. Kumfert T. G. W. Epperly

February 28, 2002

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

 This report has been reproduced
 directly from the best available copy.

 Available to DOE and DOE contractors from the

 Office of Scientific and Technical Information
 P.O. Box 62, Oak Ridge, TN 37831
 Prices available from (423) 576-8401

 http://apollo.osti.gov/bridge/

 Available to the public from the
 National Technical Information Service

 U.S. Department of Commerce
 5285 Port Royal Rd.,

 Springfield, VA 22161
 http://www.ntis.gov/

 OR

 Lawrence Livermore National Laboratory

 Technical Information Department’s Digital Library
 http://www.llnl.gov/tid/Library.html

Softwarein theDOE:TheHiddenOverheadof “The Build”1

GaryKumfertandTomEpperly

28February2002

1Thiswork wasperformedundertheauspicesof theU.S.Departmentof Energy by Universityof CaliforniaLawrenceLivermore
NationalLaboratoryundercontractNo. W-7405-Eng-48.ReleaseNumber:UCRL-ID-147343

Abstract

“The Build” is the infrastructureneeded to convert softwarefrom sourcecodeto usableform. It is intimately tied to
thesoftwareit supports,knowing aboutevery file andautomatingevery transformationneededto producea working
program.Every developerknows that a projectspendssomelaboroverheadon “the build.” How big is this hidden
overhead?

Accordingto 34 scientificsoftwaredeveloperswe surveyed at LawrenceLivermoreNationalLabs,amongcol-
leaguesat otherDOE labs,anda handful of academicsthe “perceived” overheadaveragesaround12%. Individual
casesof 20%to 30%werenotuncommon.In oneprojectclaiminga20%overhead,wefoundsupportingevidenceby
combingthroughtheirCVSrepository.

Chapter 1

Intr oduction

TheDOE spendssignificant resourceson softwaredevelopmentanduse. This documenttries to quantifywhatper-
centageof thoseresourcesareactuallyspenton build issuesinsteadof coredevelopment.By “build issues”we mean
thedevelopment,debugging,maintenanceandextensionof thesupportinginfrastructurethatconvertssourcecodeinto
its end-useform. For mostprojects,thismeansMakefilesandafew helperscripts.For morewidely usedprojects,this
canmeanorchestratingseveral tools,files,scripts,andotherparaphernaliato keepthebuild working.

Thereis no easymetric for measuringthebuild overheadin software. In Chapter2 we discussthe resultsof an
informal survey we conductedto verify thatproblemsassociatedwith thebuild arewidespread.For moreobjective
data,we examinea particularpieceof softwarein detail in Chapter3. Conclusionsandpossibledirectionsfor future
work arepresentedin Chapter4

1

Chapter 2

Survey

BetweenNovember2001andJanuary2002,weconductedasurvey to betterunderstandhow muchtimewasconsumed
by softwarebuild details. We knew up front that our survey could not definitively tell the percentageoverheadfor
the build, sinceno respondents recordedthat kind of information. However, the survey can reflect the perceived
overheadandindicateif thatoverheadis suffereduniversally or limited to a few locations/projects.The information
wasgeneratedby 19 respondentsat LLNL, 12 from otherDOE laboratories,and5 from Academia.These36 people
submitted39 responsescoveringat least28separateprojects.

Thestructureof this questionnairedeservessomeexplanation.Therewerethreedivisible sections.Thefirst (and
longest)section asked 15 questionspertainingto a particularproject the respondentworked on. Most respondents
answeredthis sectionfor theprojecton which they spendmostof their time. A few respondentsprovidedresponses
to this sectionfor morethanoneprojectwith eachproject on a separatesurvey. The second sectionhadonly four
questionsandwasparticularto theindividual; irrespectiveof any project.Thefinal sectionhadtherespondentsname,
projectname,andcontactinformation.Thesethreesectionswere separated andrandomizedto insuretheanonymity
of a particularresponsewhile allowing usto keepa reasonablecountof how many actualprojectsarerepresented.In
somecasesrespondentschosenot to nametheir project.

Ourpresentationof theresultsis dividedbetweenquestionsrequiringanumericalresponseandopen-endedques-
tions.For numericalresponses,averageandmedianarepresentedTable2.1. Theraw datais presentedin TablesA.1–
A.3 in theappendix.Thenon-numericresponsesaregroupedandlistedin Section 2.1.Theoriginaltext of thequestion
andthenumberappearedin asking sequenceis preservedbetweenTable2.1andSection2.1.

2.1 Written Responses

Thefollowing questionswereopen-ended. In this sectionwe attemptedto itemizeeachof theresponses. Responses
thatmademultiplepointswerebrokenout into separatebullets.Wealsoconsolidatedpointsandaddedamultiplier to
theendwhentherewassufficientoverlap.

Question#10. Do you find the curr ent build systemlimiting on this project?

• No (x10)
• No — make is fine
• No — we just keepextendingit
• No — our third iterationnow doeseverythingweneed.
• No, but if moreautomatic,it would freeresourcesfor otherthings
• Not Really
• Not very, but it is painful
• Yes(x12)
• Yes,configureneedsserioushelp.
• Absolutely(x3)
• Limiting in how it interacts with otherbuild systems,especially3rdpartylibraries

2

perProjectQuestions
LLNL other DOE Academia

Mean Median Mean Median Mean Median
1. How many FTE’s on thisproject? 7.8 5 3.3 2.3 12 9.5

2. Whatpercentageof your time is spenton thisproject? 76.% 85.% 66.% 60.% 70.% 78.%

3. How many configure/build/packagingtoolsdoyouuse? 2.7 2 3.2 3 2.3 2

4.a How many platformscurrently? 4.6 4 5.6 5 4.3 4.5

4.b How many additionalplatformsin thefuture? 1.5 2 .5 0 1 1

5. How many programminglanguagesin thisproject? 3.6 3 4.8 4 3.3 3.5

6. Regarding3rdpartylibraries.. .
.a . . .how many arerequired? 5.2 3 2.5 2 3.3 2

.b . . .how many areoptional? 2.2 1 5.4 2 3.7 2

7 What percentageof your time spenton this project is expended
onbuild issues?

.a . . .developmenttime 19.% 10.% 15.% 10.% 6.% 4.%

.b . . .overall time 22.% 10.% 17.% 11.% 10.% 2.%

8. For theprojectoverall, whatwould you estimatetheannualcost
for maintainingthisproject’s build (configure,release,etc)?

.a . . . in FTE’s .9 .3 .5 .3 1.3 1.5

.b . . .aspercentageof project 11.% 10.% 15.% 13.% 16.% 15.%

9. Would you saythat this projecthada significantstartupcostor
one-timechargefor thebuild? If so,what?(in person-weeks)

12 3.5 8.3 4 14 12

12. How longdoesthebuild take?(in hours)
.a . . .min 1 .5 .2 .1 .6 .6

.b . . .max 2 1 .2 .2 1.4 1

13. For eachof the build tools you use,pleaserateyour overall sat-
isfactionon a scaleof 1–10 (1 = hateit! want to rewrite from
scratch: 10= wouldn’t changeit for theworld)

.a . . . shell 4.7 5. 4.3 4

.b . . .make 5.5 5.5 5.3 5 5.2 6

.e . . .autoconf 5.2 6. 6 6 4.5 4.5

.f . . .automake 5.0 7. 3 1

14. Usingabovescale,Pleaserateyouroverall satisfactionlevel with
youroverall build system

5.5 5.5 5.8 6 5 4

perPersonQuestions
16. Youaregoingto startanew project.How interestedwouldyoube

in trying anew setof build tools?(1 = nointerest: 10= chomping
at thebit

7.2 8 6.5 6 6.2 7

17. What’s themostamountof time you spentfixing onebuild prob-
lem?(in entirecareer, measuredin days)

21 3 4.3 1.5 4 3

Table2.1: Averagenumerical answersfrom survey.

3

• Inefficient/Inconvenient,but not limiting (x2)
• Handchangeeverything!
• Hardto sharewith otherusers
• Overly complex
• Toolsinsufficient
• Requirestoomucheffort
• Ourbuild is ourbiggestrisk to ourproject’s success
• I don’t know any different
• Not onceits configured
• It’s finally in prettygoodshape,but doeshavea few limitations
• Requiredconfigfilessuppliedthroughstaticmethods.
• CannotkeepmakefilesandWindowsprojectfilescoordinated.

Question#11. What critical pieceof functionality do you wish your curr ent build system
had?

• None(x8)
• Flexibility/More amenable to change(x3)
• C++ precompiledheaders
• Build C++ sharedlibraries (x2)
• Integratedtestingandbuild
• Betterdependency checkingandanalysis/fulldisclosure(x3)
• Somethinglessslow, awkward, andfragile
• Handledmixedlanguages(link library issue)(x2)
• Protectagainstheadersoutof syncwith associatedlibraries
• Betterhandlingof dependenciesonexternalpackages
• Betterdetectandconditionally compilecodeif anexternalpackagehasbeenprovided
• Integratedtestenvironment
• Likecoordinatingmultipledevelopers
• Currentlybuildsasanapplication,wantto alsobuild aslibrary
• Goto anew platformwithout findingwherelibrariesare,settingcompilerflags,etc. (x3)
• Automaticallydeterminehow discoveredlibrarieswerebuilt.
• An elegantwayof suckingcompileroptions/namesfor differentarchitecturesoutof afile/database/somehow
• #includesearches
• Handlesdependenciesacrossdirectories(x2)
• Like to havesomeautomake-likecapabilities
• Nice to havemorestandardconfigureoptions(e.g.configure --prefix)
• Call systemadmins
• Determinechangesin systemconfiguration(i.e. whattoolshavechanged)
• Easierto understand/learn(x3)
• Betteruserinterfacefor developers
• Betterdependencecheckthantimestamps
• Exportbuild/configureinformationto usersto USElibrariesafterthey’vebeeninstalled
• Understandthatoneactioncansimultaneouslyproducemultiple targets
• Add functionalityto theprojectwithoutexhaustinglink-line buffer
• Hierarchicalcomposability (usingconfigurationof anincludedpackage)
• Moreadvancelanguageconstructs
• Oursis a fairly simply library, thebuild toolsareadequate
• Makesyntaxsucks— better syntax
• CompleteAutomation(in my dreams!)
• Bettermanagementof dependency fileswhena .h file goesaway
• GUI / moreinteractive featuresfor users(x2)
• Betteroptionthanextremely longcommandlinesof optionsto configure

4

• Easilyhandleasingletreewith sources,.o’s,andbinariesfrom multipleplatforms.
• A configurescript. We scarea lot of potentialusersaway assoonasthey realizewe expectthemto edit our

makefiles.
• Identicalbuild onNT andUnix
• Coordinatetestingonall platformsatonce.
• Updatewindowsprojectfilewhenfilesareadded/removedfrom repository
• Warnaboutnon-standardfunction calls,withoutwadingthroughstuff youflagasknown platformspecific.

Question#15. What would it take for this project to switch to a differ ent build tool?

• Movemountains.Soingrained.
• Seeanotherprojectconverted to new tool in actionfirst. (x2)
• At leastasflexible aswhat I’m usingnow.
• CrossPlatform(x2)
• Easierto use(x2)
• Realtransitionease/Low adoptioncost(x3)
• IDE
• Runon line-orientedUnix machines
• Clearadvantage
• Stable
• Recognizedpieceof software
• Significantusergroup
• Currentbuild wouldhave to breakfirst
• Someonedo it for us
• Mediumresistance
• Cleaner/ bettersyntax
• Easilybuild sharedlibrariesacrossplatforms
• Funny youshouldask,we’re in theprocessof switchingtoolsright now. (x3)
• Makemy lunch
• Goodmarketing
• Vendorchangecontrols
• Unlikely
• No compellingreasonright now, but mayrevisit whenin productionmode
• Supportall ourplatforms
• Betteruserinterface
• Provea time/effort saving
• Addresstheissuesabove
• UnpackonstandardUNIX withoutspecialstuff
• My retirement
• Significantlysimplifiedbuild files,packagedependencies
• A lot — how muchtimedo I have to spendlearningthenew thing?
• Nothingfor thisproject,but wouldusesomethingnew for anew project
• Lessoverall effort — A completeswap out to a new systemmustcost lessthanthreetweaksof my current

system,or elseI’d just keep tweaking
• No way in Hell
• Must handleparallelbuilds acrossdirectories(ourcurrentsystemdoes)
• Must satisfyall ourneedsandbeclearlysimpler/better
• Supplementmake
• Dependsoncomplexity of build tool
• Convincemeit will saveustime
• Replicateeverythingwealreadydo
• Resources.Wehavelimited resourcesconsideringeverythingweneedto do. Re-engineeringthebuild systemis

not “research”for us,soacompellingargumentmustbemadethatthecostwill freeup resourcesin thefuture.

5

• Quitefrankly, thetool wouldhaveto becustombuilt for ourproject.It seemsthatany alternativethatcouldmeet
our diverseneeds(extremelydiverseplatformsandconfigurations,on-siteandoff-site,customtool integration,
etc.)wouldeitherbemoreclumsythanwhatwedonow, or it would requireperson-yearsof effort to customize
to ourenvironment.I don’t havemuchfaith in all-in-onetoolswhenyou’vegotsuchawidearrayof needs,and
thisquestionsoundslikean advertisementfor anall-in-onetool.

Question#18. Do you havea favorite war story about building software?

• No, but building anddocumenting sucksbig time.
• No comment(x4)
• Yes
• Many Scars
• Toomany to chosefrom
• Wroteown versionof make in 1982
• Oncehadthreeprojectsnot talking togetherandhadto configure/build with onesystem
• Many warstories— no favorites
• Magicnumberissues
• Workingw/ librariesis hard.
• Linkersaregetting“better”
• C++ templatesarea greatidea,but they really suck! Peopledo workarounds,sedexpansionstemplateinstanti-

ations,andbreakstuff BIG time.
• Changesomethingandtheotherfilesdon’t get[sic]
• Build for oneplatformerasesall othersin theinstallationdirectory.
• I oncespenta weektrackingdown a threecharactertypo. The compilerflag wasmissingfor a “handful” of

compilationunitsandinduceda failureonly at runtime.
• I tried to write anautoconf/configuretestfor Tcl/Tk installation- startedfrom a cannedtestin anotherpackage

(the cut & pasteapproachto autoconf,the only way to go!). Turns out my own home Tcl/Tk installation
couldn’t be recognized. I spentquite a while trying to tweak the configurescript, only to discover that all
along(for years!) I hadbeen doinga “make” on Tcl/Tk, but never thesubsequent “make install”, somy local
configurationwas“off thechart” in termsof whereto find certainfiles,etc.
Of course, I decidedto leave my Tcl/Tk setupasis, andmake theconfigurescriptwork for it, just to cover all
the otherpoor bastardsout therewho were alsoomitting that final “make install” stepfor Tcl/Tk...! It’s one
gruesomeconfiguretest,but it works!

Question#19. Comments?

• Peopleareundereducatedre: autoconfandautomake. Aggravationcomesfrom misuse.
• If thereexistsabettertool, weshouldbeusingit.
• I amvery frustratedwith the time I wastewriting makefiles
• Veryhardto evolveusingcurrenttools. If youorderdirectoriesonewayandwantto changeayearlater, you’re

hosed.
• Makingchangesis harderthanit shouldbedownstream.
• Separateanswersfrom BIG projectsfrom thoseof smallprojects.
• Have to write lotsof scripts — make is insufficient.
• Hateautoconf,resultingconfig scriptsfail 50% so I have to hackit. . .or . . . I pass160 charactersof mystical

optionsto getit to work.
• No known build tool allowsspecifyinghigh-level targettypes.Automakepredefinestransformations,wantuser

defined.
• Choosebuild systemwisely
• Betterdesigncodearoundthebuild system,thanadaptbuild systemafterthefact.
• Tendto expectwhatwehave. Communicatingbenefitsis importantto overcomeinertiaof existing tools.
• Portabilityis abig issue.
• Whenever building 3rd party software, I expect thereto be problems. I expect to tweakmakefilesandeven

sourcecode.

6

• There’s noassertioncapabilities.. .noeasyway to suspendandqueryuserfor guidance.
• The problemswith the UNIX environmentarenot the simpletools, its the non-uniformity in compilers. The

problemsaresystemicto UNIX, notenoughstandardization.
• I’m skepticalof toolsthataren’t “built-in” onsystems,likemake is.
• CASEtoolsarepricey, but candrasticallyimprovedeveloperproductivity. . .of course,if distributionof software

is via sourcecode,this is notanoption.
• Researchenvironmentstend to preferspendingmoney onpeoplethangoodsoftwaretools.
• Automaticallygeneratedmakefilesarea mixedblessing.Many usersarenot assophisticatedasthey think in

“fixing” them.And of course, any correctchangecan’t befedbackupstreamto themakefilegenerator.
• Wanta consistency checker, whereyou make a changein theMakefilesandcanseehow thatchangecascades

throughthebuild process.
• I reallyhopethere’ssomethingbetterto bemade.My fearis that it wouldbetoocomplex, evenworsethanwhat

wealreadyhave.
• Pleaseblastout thefindingsof this survey whenthey’redone!!!

2.2 Discussion

Several piecesof informationfrom Table2.1 deserve highlighting. The overall averageandmedianbuild overhead
(Question8.b)are11.91%and10%,respectively, with a maximum35.71%anda minimumof 0%. Brokendown by
groups:theaverageandmedianare10.42%and10%,respectively for LLNL; 13.28%and11.25%,respectively for
otherDOE labs;and15.67%and15%,respectively amongacademicrespondents.Thevariationsbetweendifferent
survey groupsareprobablynot significant.

Both the averageandmaximum overheadsaresignificant. This is a substantialamountof effort spenton build
issues.Oursmallsampleof 22projectsatLLNL accounted for 18 full timeemployeesspentannuallyonbuild issues.
If ournumbersareindeedrepresentativeof all DOEsoftwareprojects,thetotal pricetagis noteworthy.

We searchedfor correlationsin our numericdata with plots andone-dimensionalleastsquaredregressions.We
thoughtperhapsthatbuild overheadmight correlatewith someof theotherfactors.In additionto lookingat theplots,
we alsoevaluatedther-squaredfactorfor the leastsquaresfit. Both approachesled to thesameconclusion;thedata
doesnot show any simplemeaningful correlationsbetweenanswers.

Therewerealsosomeunanticipatedfeaturesof this survey.
The averagenumber of programminglanguages(Question5) is surprisinglyhigh at 3.85. Having multiple lan-

guagesin apieceof softwareincreasesthecomplexity of thesoftwareaswell asthelevel of difficulty whenportingto
new architectures.Thetop threelanguageswereeasilyC, C++, and Fortran77.OneDOE projectclaimedfirst place
in thisquestionwith 8 languages,two LLNL projectstied for secondwith 7.

A secondnoteworthy result is that the overall averagenumberof requiredthird party libraries(Question6.a) is
alsohighat4.21.Theline betweenstandardandthird partylibrariesis far from clear. For thepurposesof thissurvey,
we definedthird party librariesasanything that is not typically foundon a UNIX operatingsystemand/orhaving a
distinctnameor projectwithin theDOE.For instance,thestandardC++runtimelibrary wasexcludedin thecount,but
MPI wasincluded1. This numberis an indicatorof softwarereuse.Lack of build tool support for handlingmultiple
third partylibrarieswasacommonlycited complaintin thefreeresponses.Therewasanecdotalevidenceto to suggest
that thework involved in coordinatinga numberof third party librariesin thebuild doesnot scalewell, however the
numericaldatafrom this survey was inconclusive. Oneproject insistedthat they hada stunning20 requiredthird
party libraries and only a 7.5% build overhead. Converselythird placeresponseof 11 requiredlibraries reported
the maximum build overheadat 35.7%. The type of languagesthe libraries are implementedin and the software
maintenancedevotedto thelibraryat its sourcearelikely significantfactorsthatour survey failedto capture.

To summarizewhetheror not respondentsfelt their currentbuild systemwaslimiting (Question10), we found
23 indicatingthat it wasand21 indicatingthat it wasnot. In generalthe responseswereneithertepid nor bi-polar,
but uniformly distributedacrosstheboard. Respondentswerealsoasked to rank their satisfactionwith their current
build system(Questions 13 and14) on a scalefrom 1 to 10 where1 meant “hate it! want to rewrite from scratch”
and10 meant“wouldn’t change it for theworld.” On this scale,theaveragesatisfaction with their currentproject’s
build is 5.46. Broken out among the top threetools, averagesatisfactionwith make (31 of the 39 responses)was

1Thiscausedsomeconsternation,particularlyamongthosethatonly workedwith vendorsuppliedMPI libraries.

7

5.39. Satisfactionwith autoconf(19 out of 39 responses)averagedat 5.47. Finally, averagesatisfaction for using
shell in their build (16 responses)was4.56. Thesethreetoolsweretheonly onesused by a sizablepercentageof the
respondents.

8

Chapter 3

Extracting an ObjectiveMeasure fr om CVS

Developersdo not recordthetime they spendon build issuesvs. codedevelopment.Whatis recorded,however, is all
thechangesmadeto every file within their softwarerepository. We decidedto counteachchangeto eachfile asone
unit of work, andseeif this objective measurewould supportor refutethe kinds of build overheadsreportedin our
survey. Wecouldhave takeninto accountwhichchangesarelargeandwhichonesaresmall,but therewereproblems
with this strategy. Large changesmay not adequatelyrepresentthe time, thought,anddebuggingthat went into the
changes.Similarly, verysmall changesmaybetheresultof hoursandevendaysof huntingdown a reclusivebug.

TheComponents Projectat LLNL [2] hasalready identifiedthebuild asa majorimpedimentto widespreadadop-
tion of componenttechnologyin theDOE[5]. Themulti-labCommonComponentArchitecture(CCA) Forum[1] has
alsoacknowledgedthisproblemandhasaskedthissamegroupto developacomponentpackagingstandard— clearly
anissuepertainingto thebuild.

Theflagshipproductof theComponentsProjectat LLNL is Babel[3, 4], a tool thatenablesC, C++, FORTRAN
77, Python,andJava softwareto interoperate on variousplatformsusingcompilersfrom variousvendors. All this
interoperabilitybrings aboutseriousconfiguration issuesin their build. This project follows currentbestpractices
from the Open Sourcecommunity(usingautoconf,automake, andlibtool) in managingthe build. Membersof this
projectcasuallyestimatethattheir build overheadis aminimumof 20%.

As afirst step,we listedall theactivefiles in theirCVSrepositoryandstartedcategorizingtheir function.All files
wereassignedanattribute from eachof thefollowing four categories:Stage, Source, Visibility , andRole. A Stage
couldbeoneof original-form, intermediate-formandfinal-form, dependingon whetherthatfile servedasinput to a
program,outputfrom oneprogramandinput to another, or simply existedin its final form, respectively. TheSource
category denotedwhetherthe file washandmade,the outputof a programexecutedby the developer, the outputof
a programexecutedby the user, or simply reuseddirectly from anothersourcewith the attributeshandmade, dev-
generated, user-generated, andexternalrespectively. TheVisibility of a file waseitherdistributedwith thesoftware,
or usedinternal-ly. TheRoleof thefile wasoneof core-code, test-code, example-code, documentation, build-support,
version-support, test-support, or example-support. This is displayedgraphically in Fig 3.1.

To understandhow thesecategoriesinteract, we will show somefiles andhow they fit into thesecategories.The

Stage
original-form

intermediate-form
final-form

Source
handmade

dev-generated
user-generated

external

Visibility
distributed

internal

Role
core-code
test-code

example-code
documentation
build-support

version-support
test-support

example-support

Figure3.1: Categoriesassigned to all activefiles in CVSrepositoryof Babel

9

Stage files lines changes maxchange
intermediate-form 403 94,123 4,243 91

original-form 610 96,820 3,141 126
final-form 174 218,915 600 152

total 1,187 409,858 7,984

Table3.1: File counts,line counts,numberof changesandmax.changesby stage

Source files lines changes maxchange
handmade 870 133,541 4,874 126

dev-generated 311 253,358 3,104 152
external 6 22,959 6 1

user-generated 0 0 0 0
total 1,187 409,858 7,984

Table3.2: File counts,line counts,numberof changesandmax.changesby source

README file wouldbefinal-form, handmade, distributed, documentation. SinceBabelusesautomakeandautoconf,all
Makefile.am files areoriginal-form, handmade, distributed, build-support, automake thengeneratestheresulting
Makefile.in files which are intermediate-form, dev-generated, distributed, build-support. Actual Makefile’s
thatareproducedfromMakefile.in’swouldbeconsideredfinal-form, user-generated, internal, build-support, but
Makefiles(alongwith most—but not all— user-generatedfiles) arenot partof theCVS repository, andhencearenot
includedin ouranalysislike theMakefile.am andMakefile.in filesare.

To understandwhattheseattributesmean,it wouldbehelpful to know thethenumberof files,thenumberof lines,
thenumberof repositorycommitsinvolved. For theentireproject,thesenumbersare1,187files, 409,858lines,and
7,984commits.In Tables3.1–3.4 webreakout thesenumbersaccordingto eachattribute.

Finally, in Table3.5 we filter out all but thehandmadefiles andexamine their characteristicsby their Role. We
will restrictourdiscussionto this tablein particular.

3.1 Discussion

Table3.5 is probablytheclosestmeasureof humaneffort becauseit focuseson thehandmadefiles. Thebuild support
filesconstitute13.7%of theoverall line countand27.5%of theoverall numberof changes.Build-supportis thethird
highestcategory by line countandsecondhighestby numberof changes.Thesenumberssuggestthatbuild-support
is asignificantpercentageof overall developmentactivities. It alsosuggeststhatdebuggingthebuild is ascomplex as
debugginga18301line program.

Developerscansafelyignore thedev-generatedfiles mostof thetime. However, it shouldbenotedthatendusers
may go wheredevelopersfear to tread. They may try to reador edit the dev-generatedfiles. For example,a user
might want changesomethingin the build by editing a Makefile asopposedto editing Makefile.amasa developer
wouldbecausethey donotunderstandautomakeandautoconf.Suchuserswill likely beoverwhelmedby thesizeand
complexity of theMakefile’s in Babel.They arenotwritten for humanreadability.

Thismetricthatwedevisedis coarseandimperfect,but it is objective. The27.5%of all changesseemsremarkably

Visibility files lines changes maxchange
distributed 1,105 407,964 7,617 152

internal 82 1,894 367
total 1,187 409,858 7,984

Table3.3: File counts,line counts,numberof changesandmax.changesby visibility

10

Role files lines changes maxchange
build-support 415 98,746 4,224 152

core-code 205 68,867 1,666 49
test-code 213 30,896 1,253 19

documentation 145 176,918 326 17
test-support 109 8,520 297 48

version-support 59 376 109 5
example-code 27 2,399 88 9

example-support 14 23,136 21 2
total 1,187 409,858 7,984

Table3.4: File counts,line counts,numberof changesandmax.changesby role

Role files lines changes maxchange
core-code 205 68,867 1,666 49

build-support 227 18,301 1,342 126
test-code 213 30,896 1,253 19

test-support 109 8,520 297 48
version-support 59 376 109 5
documentation 22 4,005 104 17
example-code 27 2,399 88 9

example-support 8 177 15 2
total 870 133,451 4,874

Table3.5: File counts,line counts,numberof commits,andmaxcommitsfor any file; for handmadefilesonly broken
down by Role

11

consistentwith the20%reportedbuild overhead.Thegapbetweenthesetwo narrows evenmorewhenconsidering
that thefirst numberis probablydependent on developmenttime whereasthebuild overheadis measuredin overall
time.

On the otherhand,we mustacknowledgethat resultsareindicative andnot definitive. Similar detailedanalysis
acrossa rangeof projectswould beneededbeforeinvestingtoo muchfaith in theaccuracy of this metric. Thebest
we cansayhereis thata surprisingnumberof changesarebeing committed to theCVS repository. If oneequatesa
changewith aunit of work, then a20%build overheadfor thisprojectshouldnotbesurprising.

12

Chapter 4

Conclusionsand Futur eWork

Developingandmaintaininga project’s build takesa significantpercentageof a projectsoverall developmenttime.
Time spenton the build distractsfrom coresoftwaredevelopmentanddeveloperproductivity. Pressuresfor more
softwarereuse,morelanguageinteroperability, andgreaterportability will most likely causethis build overheadto
grow asapercentageof overall person/years.

Our survey shows that peopleperceive the averagebuild overhead to be around12% with someprojectshaving
overheadup to 35%. We acknowledgethatour survey measuresonly perceptionsof thebuild overhead.To measure
theactualoverhead,we would needto monitordeveloperactivities andmaintaindetailedlogsaboutwheretime was
beingspent.Moreover, we acknowledge that the survey wasnot conductedover a true randomsampleof scientific
softwaredevelopers,nor did it succeedin capturingsimplecorrelations betweenprojectcharacteristicsandexpected
build overhead.This is not surprisingsincewe startedthe survey just to confirm that high build overheadsarenot
localizedto ourcurrentproject/location.

With softwarebuilds, thedevil is in thedetails.To arriveat somefunction

B = F (x1, x2, . . . , xn)

wherexi representsindependentcharacteristicsof asoftwareprojectandB is expectedbuild overheadrequiresfurther
study. Wewouldneedamuchlargerandmoresophisticatedquestionnaire.We’d needto have thequestionnaireweb-
enabledto getasignificantsampleof scientificsoftwaredevelopers.More in-depthstudiesof otherprojects’software
repositorieswouldalsobeneeded.Thesestudieswouldhaveto beconductedin concertwith adeveloperontheproject
sincetheprocessof assigningattributesto activefiles is laborintensive,andproject specific.

This avenueof investigation is only preliminary, but it raisestwo very tantalizingquestionsthat remainunan-
swered:

1. How many dollarsperyeardoes thecurrentbuild overheadcosttheDOE?

2. How closeis thecurrentbuild overheadto theminimumpossible?

13

Appendix A

Raw data

14

Question #’s
LLNL #’s 1 2 3 4a 4b 5 6a 6b 7a 7b 8 (FTE’s) 8 (percentage)

1 5 100.00% 4 3 0 3 7 1 5.00% 0.2 4.00%
2 5 50.00% 4 5 3 4 3 0 30.00% 0.5 10.00%
3 20 80.00% 3 4 2 7 20 0 10.00% 1.5 7.50%
9 3 90.00% 1 4 0 4 1 2 10.00% 10.00% 0.1 3.33%

11 7 100.00% 2 2 0 4 11 3 5.00% 2.5 35.71%
12 50.00% 2 5 2 2 2 1 0.00% 0.00% 0.1
13 2 1 8 0 2 1 0 0.2 10.00%
14 4 50.00% 2 2 4 4 2 2 70.00%
16 1.25 50.00% 3 3 1 1 3 3 0.00% 0 0.00%
17 1 20.00% 2 4 1 2 4 2 20.00% 0.2 20.00%
18 20 90.00% 4 2 2 6 10 2 70.00% 2.5 12.50%
19 6 100.00% 2 6 0 4 8 8 10.00% 0.3 5.00%
20 5 80.00% 2 3 2 4 1 0 10.00% 10.00% 0.5 10.00%
21 3 100.00% 3 6 2 1 1 1 0.00% 0.00% 0 0.00%
22 8.75 100.00% 2 3 1 3 0 0 1.00% 1.00% 0.01 0.11%
23 5 75.00% 1 3 1 3 6 1 5.00% 0.25 5.00%
24 5 100.00% 3 5 0 6 0 6 25.00% 15.00% 0.75 15.00%
25 6 66.00% 4 12 3 3 2 10 0.00% 0.00% 1 16.67%
26 5.5 100.00% 4 3 3 7 50.00% 20.00% 1 18.18%
27 30 90.00% 2 3 4 5 15 0 75.00% 5 16.67%
28 8 80.00% 4 5 0 3 10 100.00% 80.00% 1.5 18.75%
29 0.1 10.00% 5 10 2 2 1 3 10.00% 0.01 10.00%

DOE #’
4 2 80.00% 3 6 2 6 5 2 10.00% 20.00% 0.25 12.50%
5 5 100.00% 5 10 0 6 2 20 50.00% 1.5 30.00%
6 4 70.00% 2 3 3 1 5.00%
7 4.5 100.00% 6 9 4 2 10 20.00% 1.5 33.33%
8 1 30.00% 2 4 1 4 2 5 5.00% 0.1 10.00%

10 10 50.00% 3 9 0 4 2 10 5.00%
30 0.5 50.00% 3 3 8 2 0 5.00% 5.00%
31 2 50.00% 3 2 0 4 5 0 20.00% 25.00% 0.25 12.50%
32 1 50.00% 2 3 4 2 1 45.00% 5.00% 0.04 4.00%
37 2.5 75.00% 3 7 0 5 2 1 10.00% 11.00% 0.01 0.40%
39 20 100.00% 2 5 2 2 7 1 5.00% 3.00% 0.7 3.50%

Academic #’s
15 6 100.00% 3 4 2 2 0 33.00% 1.7 28.33%
33 20 75.00% 2 4 1 3 10 10 5.00% 2.00% 0.5 2.50%
34 20 100.00% 1 2 0 2 0 8 2.00% 2.00% N/C
35 10 40.00% 2 6 1 5 1 3 11.25% 1.5 15.00%
36 9 25.00% 2 5 1 4 2 0 0.00% 0.00% 1.125 12.50%
38 9 80.00% 4 5 2 4 5 1 15.00% 1.8 20.00%

TableA.1: Raw numericproject data(part1)

15

Question #’s
LLNL #’s 9 (weeks) 12 (min hours) 12 (max hours) 13a 13b 13c 13d 13e 13f 13g 13h 13i 13j 14

1 1.5 1.5 6 8 8 6
2 1 1 1 9 7 7 5
3 3 4 4 8 1 4
9 0.1 0.03 0.03 5 5

11 28 1 1 4 7 7 6
12 2 0.1 0.1 9
13 3 0.03 0.03 4
14 0.025 0.167 8 3
16 0.33 0.33 6 10 8
17 12 0.5 1 7
18 0.25 1 6 6 7 2
19 4 0.025 0.33
20 Yes 5 5 5
21 0 2 2 5 5 5
22 0.2 0.08 0.08 5 6 5
23 3 0.66 1 6 6
24 50 0.5 3 3 1 2 3
25 Yes 0.66 12 5 5 5 6
26 16 0.167 5 1 1 1 1 1 1
27 0.25 2 5 5 4
28 2 2 8 6 2 8
29 16 1.5 3 9

DOE #’
4 0.5 1 1 5 8 7 8
5 16 1 5 5 1 7
6 0.03 0.03 6 6
7 0.167 0.167 1 6 1 1 1 10 1
8 0.08 0.08 5 5 7

10 3 5 5
30 5 5 5
31 0.08 0.17 6 6 9 7
32 0.17 0.17 2 6 5
37 4 0.08 0.08 10 8 8 8
39 25 0.3 3 8 8

Academic #’s
15 0.7 0.7
33 1 2 4 2 7.31
34 0 8 8
35 30 0.5 1 6 7 4
36 12 0.05 1 1 3
38 0.6 2 7 3

TableA.2: Raw numericprojectdata(part1)

16

LLNL DOE Academic
Interest (16) days spent (17) Interest (16) days spent (17) Interest (16) days spent (17)

1 8 12.5
2 3 5
3 8 15
4 3 1.5
5 8 250
6 7 4
7 5 3
8 10 3
9 10 88

10 5 5
11 10 3
12 8 0.25
13 9 2
14 7 0.5
15 1 1
16 8 2
17 9 2
18 8 0.5
19 10 5
20 0
21 5 1
22 10 5
23 3 3
24 10 22
25 9 0.25
26 6 2
27 2 0.25
28 4 0.02
29 5 2
30 5 10
31 3
32 7 5
33 9 0.04
34 9 0.5
35 7 1
36 8 15
37
38
39
40

TableA.3: Raw datafor personal questions

17

Bibliography

[1] TheCommonComponentArchitecture(CCA) ForumWebsite.www.cca-forum.org.

[2] components@llnl.gov Website. www.llnl.gov/CASC/components.

[3] Tom Epperly, ScottKohn,andGaryKumfert. Componenttechnologyfor high-performancescientificsimulation
software. In Working Conferenceon Software Architecturesfor ScientificComputingApplications, Ottowa, On-
tario, Canada,October2000.InternationalFederationfor InformationProcessing.Also available asLawrence
LivermoreNationalLaboratory technicalreportUCRL-JC-140549.

[4] ScottKohn, Gary Kumfert, Jeff Painter, andCal Ribbens. Divorcing languagedependenciesfrom a scientific
softwarelibrary. In 10thSIAMConferenceon Parallel Processing, Portsmouth,VA, March2001. Also available
asLawrenceLivermoreNationalLaboratorytechnicalreportUCRL-JC-140349.

[5] Gary Kumfert, Bill Bosl, TamaraDahlgren,Tom Epperly, ScottKohn, andSteve Smith. Achieving Language
Interoperability Using Babel. CASC/ISCRWorkshopon ComponentandObject-OrientedTechnologiesfor Sci-
entificComputing,WenteVineyards,Livermore,CA, July2001.

18

